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A shallow-liquid theory in magnetohydrodynamics 

By L. E. FRAENKEL 
Aeronautics Department, Imperial College, Londont 

(Received 13 March 1959) 

The non-linear and linear ‘ shallow-water ’ theories, which describe long gravity 
waves on the free surface of an inviscid liquid, are extended to the case of an 
electrically conducting liquid on a horizontal bottom, in the presence of a vertical 
magnetic field. The dish holding the liquid, and the medium outside it, are 
assumed to be non-conducting. The approximate equations are based on a small 
ratio of depth to wavelength, on the properties of mercury, and on a moderate 
magnetic field strength. These equations have a ‘ magneto-hydraulic ’ character, 
for in the shallow liquid layer the horizontal fluid velocity and current density are 
independent of the vertical co-ordinate. 

Some explicit solutions of the linear equations are obtained for plane flows and 
for axi-symmetric flows in which the velocity vector lies in a vertical, meridional 
plane. The amplitudes of waves in a dish, and the amplitudes behind‘wave fronts 
progressing into undisturbed liquid, are found to be exponentially damped, the 
mechanical energy associated with a disturbance being dissipated by Joule 
heating. 

The approximate non-linear equations for plane flow are studied by means of 
characteristic variables, and it appears that, because of the magnetic damping 
effect, there is less qualitative difference between solutions of the non-linear and 
linear approximate equations a t  large times than is the case when the magnetic 
field is absent. In  particular, the characteristic curves depart only a finite distance 
from their ‘undisturbed positions ’. 

1. Introduction 
At the beginning of a general article on the magnetohydrodynamics of liquids, 

Lehnert (1952) describes some simple experiments made with mercury in a glass 
dish 20 cm in diameter and about 4 cm in depth. He points out that the surface 
waves generated by moving a peg in the liquid, or by tapping the dish, ‘disappear ’ 
when a vertical magnetic field is imposed, and that whereas the liquid appears to 
have a ‘water-like consistence’ when there is no field, it ‘acts as a thick syrup’ 
when the field is applied. 

In  the present paper an attempt is made to describe such phenomena 
theoretically: to this end, stringent approximations have of course to be made. 
We examine the effect of a vertical magnetic field on long gravity waves in 
a shallow, inviscid, electrically conducting liquid. The problem is felt to be of 

t Most of this work was done while the author wm on leave of absence at the Guggen- 
heim Aeronautical Laboratory, California Institute of Technology. 
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interest because its relative simplicity offers some hope of understanding: the 
fluid is incompressible and, in the case of mercury, has a substantial and uniform 
conductivity; the theory for zero magnetic field is well established (Lamb 1932; 
Stoker 1957); and experiments can be made without excessive difficulty. 

The paper is in three parts. In  the first, approximate governing equations are 
found by an order-of-magnitude analysis which is based on a small ratio of depth 
to wavelength, on the properties of mercury, and on a moderate field strength. 
As in the case of no magnetic field, two sets of equations are found: a non-linear 
set, appropriate when the wave amplitude and the depth of the liquid layer are 
comparable, and a linear set, appropriate when the amplitude is of even smaller 
order than the depth. With the derivation of these approximations, a simplified 
physical picture also emerges. To the lowest order, the horizontal components of 
velocity, electric field, and current density, and the vertical component of the 
magnetic field, are constant across the liquid layer (as this is traversed vertically) ; 
the remaining components vary linearly. To the scale of the field outside, where 
the material is assumed non-conducting, the liquid appears as a current sheet. 

In  the second part of the paper, a number of solutions of the linear equations 
are found; these describe, for plane flow and axial symmetry,t the motion of the 
free surface in a dish (in terms of modes or standing waves), and the motion due to 
travelling waves in a layer which is unbounded laterally. In  the third part, 
‘non-linear effects’ in plane flow are studied: although even the approximate, 
non-linear equations are still too difficult to be solved exactly, we obtain some 
idea of the nature of their solutions by using characteristic co-ordinates. 

Theories related to our problem have, of course, been developed by other 
writers. Lundquist (1952) gave, among much else, a shallow-liquid theory based 
on infinite electrical conductivity. As he himself observed, and as will be seen 
below, this assumption is inappropriate to experiments on the laboratory scale. 
Stewartson (1957) developed a theory to describe some later experiments of 
Lehnert, and studied the steady viscous flow of mercury resting on a plane, an 
inner disk of which rotated, while the outer part remained at  rest: the magnetic 
field was assumed to be zero or large. 

It has been remarked above that the ordinary non-linear and linear shallow- 
water theories (Lamb 1932, $$ 187 and 169, respectively, or Stoker 1957, $$ 2.2 
and 10.13) are ‘well established’. It is certainly true that both theories have 
a long history, but they appear to remain a subject of dispute among workers of 
far greater authority than the present writer (see, for example, Stoker 1957, 
p. 342; Ursell 1953; and Longuet-Higgins 1958). Since these theories form the 
starting-point of the present paper, however, some discussion of their validity is 
essential. The relevant parameters are E ,  the ratio of mean depth to wavelength, 
and 6, the ratio of amplitude to mean depth. There seems little doubt that if E ,  

measured from the shortest wave in some finite space-time domain, is small 
(breaking waves, bores, and hydraulic jumps being thus excluded), and 6 is O( l), 
the non-linear theory is a valid first approximation in that domain. If 6 and 6 are 
both small, the linear shallow-water theory is a valid first approximation. We 

t ‘Axial symmetry’ here means not only symmetry about a (vertical) axis, but also that 
the velocity vector lies in a meridian plane. 
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further conclude, from the sources cited above,? that if E and S are both small, the 
non-linear approximation is an improvement on the linear one only if s2/6 is also 
small, since only then are the additional terms in the approximate non-linear 
equations larger than the terms neglected in both cases. (If E,/S is O( 1) or large, 
the linear shallow-water theory is the more consistent approximation, and 
improvements upon it take a form different from that of the non-linear shallow- 
water theory.) There remains the question of bores and breaking waves. In  the 
present paper we follow Lamb (1932, tj 187) and Stoker (1957, 5 10.6) in incor- 
porating these in the framework of both approximate theories, but we regard this 
as an empirical procedure, in the nature of mathematical hydraulics, which 
provides a crude over-all description of the phenomena. 

PART I. THE APPROXIMATE EQUATIONS 

2. The non-linear approximation 
We write Maxwell’s and the hydrodynamic equations in terms of the electric 

field strength E, the magnetic induction B (which we also call the magnetic field 
strength), the current density J, and the fluid velocity V; T denotes time, 
P fluid pressure, p density of the liquid, w charge density, K dielectric constant, 
cr electrical conductivity, and ,LA magnetic permeability. Rationalized M.K.S.Q. 

units are used. The unit vector i, points vertically upwards. 
Neglecting displacement and convection currents, and the viscosity of the 

liquid, we have 
(2.1), (2.2) 

VAB = pJ = ,w(E+VAB), V.B = 0, (2.3), (2.4) 

p-- = -VP-i,pg+ J A B ,  V . V  = 0. ( 2 4 ,  (2.6) 

0 
V . E  = -, aB VAE = -- 

aT’ K 

DV 
DT 

Let (X,, X,, X,) be Cartesian co-ordinates, and consider a flow of conducting 
liquid bounded by a solid surface X, = 0, a free surface X, = H(X,, X,, T ) ,  and 
the vertical wall 9 of a dish (which may be at infinity). A vertical magnetic 
field B, is applied, and for simplicity we suppose that this extends throughout 
space. The medium outside the liquid is assumed to be non-conducting and free 
of charge (although there may be weak surface charges on the interfaces). The 
initial disturbance is to be confined to some finite region. The boundary conditions 
are then as follows, 

AsX+co, B -+ i,B,, E-+ 0; (2.7a, b )  

on X, = 0, G = O ;  (2.8) 

on X, = H ,  
aH aH aH 

P = 0, ar+t++q,--K ax, ax, = 0. (2.9a, b )  

Also, the normal component of velocity must vanish on 9; and the vector B and 
the tangential components of E must be continuous across the interfaces X ,  = 0, 
H and 9, continuity of the tangential components of B following from the 

t Dr Ursell hasc also been kind enough to show the present writer how the main con- 
clusions of his 1963 paper may be derived much more simply. 

6-2 
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requirement of finite current density when the conductivity is finite. (Here we 
have assumed that the magnetic permeability, p, is constant throughout the 
field. If ,u is assigned different values in the liquid and outside it, the tangential 
components of B/p must be continuous: the corresponding changes, in the theory 
which follows, are easily made.) 

We now introduce the small parameter e = H,/L, where, in the initial conditions, 
H, is a typical depth and L a length characteristic of changes in the horizontal 
directions, and seek the leading term in the asymptotic expansion of each 
dependent variable in powers of €4. The other parameters of the problem are the 
magnetic Reynolds number N ,  and a dimensionless field strength K :  

For mercury N + 4L.8 (L in metres): it  is therefore assumed that for laboratory 
experiments N < O( 1). The order of K will be so chosen that the ordinary theory 
(Big = 0)  falls within the range of our approximation: in the momentum equation 
the magnetic force is not to dominate the gradient of hydrostatic pressure. We 
therefore assign to the hydrodynamic variables and to the natural time the orders 
which apply when Btcr = 0 (see Stoker 1957, 0 2.4). Dimensionless variables of 
O( 1)  are introduced by 

where a is a symbol defined to be 1 inside the liquid layer and 0 outside it. The 
orders of the electromagnetic variables are determined from the governing 
equations in the Appendix, and are found to be those in the following scheme: 

It is also found necessary to restrict K to be O(e*): in place of K we introduce 

For mercury and with e = 0.1, the following field strengths correspond to k = 1: 

L(metres) 0.05 0.10 0.15 

B, (104gauss) 0.35 0.29 0.26 

Note that the lowest-order electric field, which is O(e*), is not induced by time 
variations of the magnetic field, which are O(e2). As may be seen from the Appen- 
dix point (v), and from what follows, the role of this electric field is to conserve the 
current within the liquid. 
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The horizontal components of (2.1), (2.3) become 

3% - 0) - = 0) ae, 
8x3 ax, 

--- 

ab, . 
-- ab2 = jl = e,+w,, - = j 2  = e,-w,; 

ax3 8x3 

(2.12a, b )  

(2.13a,b) 

and the vertical momentum equation reduces, as usual, to 

so that = h-x,, 

where the boundary condition (2 .9a)  has been used. The approximate equations 
which govern the motion of the liquid are then (explanations follow): 

ah a(hv,) a(hw,) 
at ax, ax, -+- +- = 0, (2.14) 

Dw, ah + 2k(e, - w,), -~ - - - - - 2k(e,+w,), (2.15a, b) DVl -- 
Dt 3x1 Dt ax, 

- 

(2.16) 

(2.17) 

In (2.15) the pressure gradient and the e-terms are independent of x3 (see (2.12))) 
and it is assumed that initially TI, and w 2  are independent of x,. Then we may write 
(2.15) in Lagrangian co-ordinates and integrate with respect to time to show that 
v1 and w, are independent of x3 for all time. The continuity equation V . V = 0 can 
now be integrated across the liquid layer to yield (2.14) when the boundary 
conditions on V, are applied. Equation (2.16) is the reduced form of the vertical 
component of (2.1). Equation (2.17) expresses the conservation of total current 
within the liquid layer, and may also be derived as follows. In  view of the anti- 
symmetry with respect to x,  of the outside solution for b, and b, (see below), and 
the continuity of these quantities across the interfaces, we may integrate (2.13) to 

(2.18 a, b )  b, = (e,-v,) (x3- ah), b, = - (el + 2, , )(x,-@); 

and 
ab, ab 

3 -  3 -  ax, ax, j - e  ---1 (2.19) 

in the liquid. Now the continuity of B across X ,  = 0, H, and V A B = 0 outside, 
require n. J = 0 on X ,  = 0, H ,  and this condition yields (2.17) on both surfaces. 

Equations (3.14) to (2.17) must be solved with appropriate initial conditions 
and with boundary conditions on 9. If suffices n and t denote directions normal 
and tangential to 9, such that ‘nt3 ’ form a right-handed system, we require that 

w, = 0, e,+v, = 0 on 9. 

To complete the picture of conditions in the liquid we observe that (2.4) 
reduces to ab,/ax, = 0; b, is thus to be found from the outside solution. 
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In  those special cases ( $ 5  4,5) where the dimensionless electric field strength is 
of higher order than the velocity, the magnetic force in the momentum equation 
is proportional to the velocity, and is precisely like the quasi-viscous force 
introduced by Rayleigh (see Lamb 1932,s 242) in his study of the waves caused by 
application of pressure to the surface of a stream. 

Although to our approximation the conduction current is divergence-free, the 
electric field strength is not: in fact to the lowest order 

V . E  = -B,.(VAV), 

and we shall also have E3 discontinuous across X, = 0, H .  However, the corre- 
sponding charges are O(lc)-or, in dimensionless form, O(gL/c2),  where c is the 
velocity of light-and the divergence of conduction current required to create 
these charges is therefore also O(K) ,  and this is negligible to our approximation. 

We now turn to the external problem. To the natural scale L of the outside 
field the liquid is simply a current sheet, since the boundary conditions on 
x3 = 0 - , sh + may be satisfied on x3 = 0 T . The field equations reduce to 

VAb = 0, V.b = 0, 

so that 
1 j*(x’)hR 

b =-/I-- 427 R3 dx; dxi , 
(2.20) 

where j* = ( j ,h , j ,h ,  0), R = i,(sl-z~)+i2(x2-x;l)+i3x,.) 

To determine the E field we have to solve another potential problem 

VAe = 0, V . e  = 0; 

here even boundary values of el and e2 are given on x3 = 0 T , and in general we 
have to solve an integral equation with a source-type kernel. 

We shall make no attempt to obtain explicit solutions for these external fields, 
but shall concentrate on the behaviour of the liquid. 

In  the ordinary (k = 0) non-linear approximation, as expounded by Stoker, the 
error is a factor (1 + O(@)} .  In  our case, inspection of the neglected terms suggests 
that the error in the hydrodynamic variables is a factor (1 + O(E)} .  It is true that 
in the vertical component of (2.3) we retain terms of O ( d )  and neglect the VA B 
term, which is O(s2) ,  but the corresponding neglected force in the momentum 
equation is only O(s4), compared to O(s)  for the lowest-order magnetic force. 
Moreover, for axi-symmetric and plane flows ( 5  5), V and B are in the same 
vertical plane and V A B has no vertical component, so that the ratio of neglected 
to retained terms is O(s)  in all equations. 

3. ‘Shock waves’; the energy balance 
In principle, bores, hydraulic jumps, or shocks (henceforth we shall use the last 

term) violate the assumptions of the theory, since in their neighbourhood the 
vertical acceleration is certainly not negligible; but since shocks, idealized to 
surfaces of discontinuity, have been fitted with some success into the theory for 
k = 0, we shall attempt to incorporate them here also. This is essentially an 
empirical step. If the governing equations are written, by means of Gauss’s and 
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Stokes’s theorems, in an integral form appropriate to a.moving ‘ control surface ’,t 
and then applied in the usual way to a small surface enclosing a portion of the 
shock, the jump conditions are found to be: 

(conservation of mass) [h(wn-wn)l = 0, (3 .1)  

(irrotationality of e, and e,)  [etl = 0, (3 .3 )  
(conservation of current) [h(en + vt)l = 0, (3 .4 )  

(momentum) [Qh2 + ~ w , ( w ,  - w,)] = 0, [vt] = 0, (3 .2a,  b )  

where horizontal components normal and tangential to the shock are denoted by 
suffices n and t ;  ‘nt3’ form a right-handed system; w, denotes the shock velocity; 
and square brackets denote, for the moment, a jump or discontinuity operator. 
The hydrodynamic jump conditions are unchanged by the presence of the 
magnetic field; as usual, energy considerations (below) require that particles 
cross the shock from a region of smaller to one of larger depth. 

The approximate equations (2.12) et seq. are not uniformly valid. In  their 
derivation, we have neglected a number of terms which, if retained, would lead to 
wave-speeds other than (gH)*, which is the only characteristic speed implicit in 
our equations. In the case of a wave travelling into still liquid, these neglected 
effects would propagate disturbance (of a higher order in 6) ahead of the wave- 
front predicted by our theory. The approximate equations give warning of this 
when the wave-front is a shock: then the tangential currentjlh is discontinuous, 
so that b, is logarithmically singular (cf. a discontinuity in loading in thin aerofoil 
theory). 

We proceed to the energy balance of our approximate system. First, we must 
write the appropriate Poynting vector, which is, in the liquid, 

1 (3 .5)  
where s = i1e,b3-i,e1b3-i,(e1w,-e,w1+e~+e~) ( z 3 - 4 h ) .  J 
Since V . (e  A B,) = B,. (V A e )  = 0, the integral of e A B, over a closed surface 
vanishes. Also, s1 and s, are not significant because their flux is across small 
surfaces. 

Consider now a moving volume of liquid, bounded by a vertical cylinder C, of 
cross-section A ,  and containing shocks along a number of vertical surfaces of 
which C, is typical. (C, is not necessarily a closed curve in a plane x, = constant.) 
On C ,  n is the outward normal; on C,, n pointsin the directionof the relative fluid 
velocity, wn- w, > 0.  Suffices + and - refer to values on the downstream and 
upstream sides of C,,, respectively, and we write {h(w, - w,)}, = {h(v,  - wn)}- = m. 
To construct the energy equation, we perform the differentiation in 

t The momentum equation must first be multiplied by h. The integral form of (2.16) is 

Ice. d l  = 0, where dl is a line element of the horizontal circuit C; the fact that C may be 

partly in, and partly out of, the liquid causes no difficulty since e, and ep pass continuously 
through the liquid and do not change significantly with X ,  in any interval of width O(eL).  
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and substitute for ahlat from the continuity equation and for avlat from the 
momentum equation. The result is simplified by introduction of the Poynting 
vector and the shock equations, and is finally found to be 

+ 2 k S S a ( j 2 h + s ~ 1 ~ , = , ) d A .  (3 .6)  

Here the left-hand side represents the rate at  which the pressures on C are doing 
work on the volume: on the right there appear the rates of increase of the potential 
and kinetic energy, of energy dissipation by shocks, of energy dissipation by 
Joule heating, and of efflux of electromagnetic energy to the external field. 

Consider a disturbance initially confined to a finite domain, and choose C 
outside the wave-front: then the left-hand side of (3.6) vanishes. If we assume 
that some (or all) of the initial potential and kinetic energy of the disturbance is 
ultimately dissipated, it is clear that in the ordinary case ( k  = 0) shocks provide 
the only mechanism for this: in our case other means are available. It therefore 
seems likely that certain, initially continuous flows, which lead to shocks when 
k = 0, may remain continuous when k > 0. In  part I11 it will be shown that this 
is, in fact, the case. 

4. The linear approximation 
It has been implicitly assumed so far that the wave amplitude IH-Holmax is 

comparable with the mean depth H,. We now suppose that the initial conditions 
introduce a second small parameter 

Whereas orders with respect to 8 were written explicitly in (2.10),  (2.11),  those 
with respect to 6 will be treated implicitly. Like ahlax,, the dimensionless 
velocities vl, v2 are now 0(6), and we write 

where 7 is O(6). 
h = 1 + 7(Xl,X,, t ) ,  

In  the momentum equation, Dvl/Dt now reduces to avl/at, and (2.17) reduces to 

a a 
- (el + v2) + -- (e, - vl) = 0, 
8x1 8x2 

so that the magnetic force in the momentum equation is irrotational, and 
derivable from a potential. Hence if the vector (vl, v2) is irrotational initially (as 
we assume), it remains so for all time; on the linear theory this is true whether the 
motion is continuous or not. Then by (2.16) and (4 .1)  

If the liquid is unbounded laterally, el and e2 vanish a t  infinity, are continuous 
through the field (by the linearized form of the shock equations), and have no 
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singularities. Hence el = e2 = 0 (although there will be an electric field to a higher 
order). Again for axi-symmetric flow, and for certain plane flows ( 5  5), the electric 
field vanishes from the hydrodynamic equations, which are then 

If the velocity potential g5 is introduced, such that 

the momentum equations are satisfied identically, and the continuity equation 
becomes 

(4.5) 
a2g5 a2g5 aag5 a+ -+- = -+fk-, 
ax; ax: a t2  at 

which is a form of the telegraph equation. 
To obtain the energy balance of the linear approximation (with el and e2 not 

necessarily vanishing) we rewrite (3.6) for a fixed vertical cylinder C* of cross- 
section A *  ; subtract the continuity equation 

and, writing h = 1 +7, neglect terms of O(s3). There results 

This equation can also be found directly from the linear equations. We observe 
again that the potential and kinetic energy is continuously dissipated by Joule 
heating: if C* is chosen such that v m  = 0 there, and if also el = e2 = 0, this is the 
only effect on the energy within C*. 

5. Plane and axi-symmetric flows 
We discuss the plane and axi-symmetric cases together; for this, it is convenient 

to introduce the symbol p, which is 0 for the former case and 1 for the latter. For 
the axi-symmetric case, (x,, x,, x3) are identified with cylindrical co-ordinates 
( r ,  0, z) ,  dimensionless as in (2.10). The problems to be considered are those for 
which a( )/ax, = 0, and V, = B, = 0 initially, It then follows from the full 
equations, (2.1) to (2.6), and from the boundary conditions, that everywhere and 
for all time 

Currents flow only in the 2-direction. 

v, = B, = El = E3 = 0. 

We now find from (2.1) that, inside and outside the liquid, 

and if the boundary condition a t  infinity is used, e,  = 0 everywhere. 
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But at this stage we must inquire whether these conditions can be simulated in 
the laboratory. There are no special difficulties associated with the axi-symmetric 
case (for which e2 = 0 is valid), but we cannot achieve a perfectly ‘plane’ state 
of affairs with flow in a channel (even when viscosity is neglected) because the 
current must flow in closed loops. Probably the best way of obtaining approxi- 
mately plane flow in a channel is to make the side walls (that is, the walls parallel 
to X ,  = 0)  far apart relative to the wavelength L and of highly conducting 
material, as Hartmann did in his experiments (1937) on plane Poiseuille flow. 
Even then the electromagnetic field is ‘plane’ only in a limited region about the 
central part of the channel, the boundary condition a t  infinity cannot be invoked, 
and we must accept an e ,  which is constant in space over the region in question. 
Its strength is determined by the condition 

j zdx ,dx3  = (ez-v , )hdxl  = 0 (5.2) ss s 
for the non-linear theory, with h - 1 when we linearize. However, this still leads 
to e2 = 0 if (i) the initial conditions are such that h is an even and w1 an odd function 
of x,, or (ii) the 2,-length of the liquid is much greater than the z,-length of that 
part of it which is moving, or (iii) w,h is oscillatory such that 

Jv,hdzl .g Shdx,. 

ss 
Again, if the side walls are short-circuited by means of a very good solid conductor, 
parallel to the x,-axis and outside the liquid, the electric field e2 will vanish, while 
the condition 

j, dx, ax3 = 0 

is still satisfied. The contribution to the magnetic field of the current in the 
solid conductor must, of course, be taken into account. 

In  what follows we consider only axi-symmetric flows and those plane flows for 
which the electric field vanishes from the lowest-order hydrodynamic equations. 
If, as in the axi-symmetric case, the current aV A B is exactly parallel to all the 
insulating boundaries and flows in closed circuits, the electric field is, to the 

E = (0, c2Bo J ( g L )  G, 01, 
lowest order, 

where eg  is calculated from the time variation of the magnetic perturbations: 

To the lowest order the current depends only on the velocity, and the magnetic 
perturbations are found from it, as before. 

PART 11. SOME LINEARIZED SOLUTIONS FOR PLANE A N D  

AXI-SYMMETRIC FLOW 
6. An initial-value problem 

We ask what happens to a given initial elevation f (2,) of the free surface. More 
precisely, we consider the following problem for plane flow (xl, x2, x3 being 
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Cartesian co-ordinates, ,8 = 0) ,  and axi-symmetric flow (xl ,  x2, x3 being cylindrical 
co-ordinates, l3 = 1) : 

a$ 
7 = ---2k$ = f ( x l ) ,  at 

av, 0, - = -j’(xl); axi at 

at time t = 0, 

v l = - =  a$ 

at lxll = a, 

Waves in a dish of semi-width or radius L (a  = l ) ,  and in an unboundedfluid 
(a -+ 00) will be considered. In  place of x1 and vl, we shall now write x and u (when 
,8 = 0) or r and u (when /? = 1). 

7. Standing waves in a dish 
Here, solutions of two rather elementary eigenvalue problems are required : 

the method is obvious, and no details of it will be given. In  the plane case, to 
satisfy the requirement of zero total current normal to a flow plane, we specify 
a disturbance symmetrical about x = 0:  

m 

1 
f ( x )  = CA,cosnnx (1x1 ,< l), 

where the n = 0 term is absent because Ho is taken to be the mean value of H ( X ,  0). 
Then, with (n2n2 - k2)* = o n, 

m 

1 
$ = - e-kt 2 A, cos nnx oi l s in  ant, 

7 = e-ktx Ancosnnx{cosw,t +kw;lsino,t}, 
W 

1 

( 7 . 1 ~ )  

(7.1 b)  

m 

1 
ti, = e-kt C A ,  sin nnx nnw;l sin unt ,  ( 7 . 1 ~ )  

the trigonometric functions of time becoming hyperbolic functions for k > nn. 
The effect of increasing field strength, k ,  upon any single mode, T ~ ,  is precisely 
like the damping of a mechanical system: a t  k = 0, 7, oscillates harmonically in 
time; for 0 < k < nn, the frequency is reduced, and the motion is damped; at 
k = nn, 7, moves like e-kt ( 1  + kt) ; for k > nr, 7, behaves like 

exp {[ - k + (k2  - n2n2)*] t}; 

and as k + co (although this is outside the region of validity of our theory), T J ~  

tends not to move. 
For the axi-symmetric case, f ( r )  is expanded in a Dini series (Watson 1944): 

m 
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where A, are the positive zeros of J1, and the n = 0 term is absent because Ha is 
taken as the mean value of H(r ,  0) with respect to horizontal area. Then, with 
(A: - k2)* = w,, m 

1 
$ = - e-& 2 A, Ja(A,r) w;l sin writ, (7.2a) 

m 

1 
7 = e-kt A,  Jo(A,r) {cos w,t + kw;l sin unt}, (7 .2b )  

m 

u = e-kt C A, Jl(A,r) A,o;l sin w,t. 
1 

( 7 . 2 ~ )  

The shape of the modes is slightly different from that in the plane case; their 
behaviour with time is precisely the same. 

8. Travelling waves in an unbounded liquid 
We introduce the Laplace transform 

F(x ,p)  = p I O m  e-M'(x, t )  dt. 

In  the plane case, with the initial conditions a$/at = - f(x), and $ = 0 at t = 0, 
the differential equation becomes 

and we require that 7 -+ 0 as 1x1 -+ 00. Let ( p 2  + 2kp)t = q ;  there is a cut from 
p = - 2k to p = 0, and q denotes that branch which is positive on the positive 
real axis. The fundamental solution of (8.1) is 

e-4lz-hl 
g(z; A )  = --* 

2q ' 
using this, and inverting the transform, we find that 

( 8 . 2 ~ )  

- - - e-kt JI:ttl,(k{t2 - (x - A)2}*) f ( A )  dA,  (8 .2b)  

where L? denotes the Bromwich path (c - ico to c + ico, c > 0,  in the present case), 
In is the modified Bessel function of the first kind and order n, and the inversion 
integral has been evaluated by standard methods (see, for example, van der Pol 
& Bremmer 1955). 

Consider first the simple if unrealistic case of an initial elevation concentrated 
at the origin such that the raised area of liquid is y :  f (x) = yS*(x), where 6" is the 
Dirac function. This will give an indication of the behaviour of more sensible 
solutions. Then, with U denoting the Heaviside unit function, 

kt 
11(k{t2-X2}*) 

$ =  - 4-y e-ktta(k{t2 - x2}+) U(t  - 1x1 1, 

( 8 . 3 b )  

( 8 . 3 ~ )  
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Comparing this with the ordinary (k = 0) solution, 7 = (47) s*(t - / X I ) ,  we observe 
that the surface elevation is exponentially damped near the wave-fronts ] X I  = t ,  
where I. - 1, Il N (3k) (t2 - x2) t ,  but that there is also a residual wave between the 
fronts which decays only slowly near x = 0, where I, N Il - ekl (27rkt)-&. 

Such a state of affairs is hardly surprising. We would expect the magnetic 
force to damp most strongly the high-frequency Fourier components which 
dominate near the wave-front; on the other hand, continuity requires that 

7 dx be constant, so that if the elevation is damped near the fronts, it  must Km 
have compensating values elsewhere. 

To examine this effect in more detail, we study the solution due to an initial 
step, f(x) = sU( - x): the flows due to double or multi-steps can be easily con- 
structed from this by superposition. After a little reduction one finds that 

( 8 . 4 ~ )  

(8 .4b)  

so that ~ ( 0 ,  t )  = 46, and for x < 0, ~ ( x ,  t )  = 6-~( 1x1, t ) ;  hence it is sufficient to 
study g for x 2 0. Also 

6 e-kl 
2 

u = -Io(k{t2-22}#). 

By expanding the integrand of ( 8 . 4 ~ )  in series forp large, or the integrand of (8.5) 
for ( t  - p )  small, one finds that near the wave-front x = t ,  

k”2 
7 = Se-kl (1 + (k t+  2 )  k,8+ (k2t2+ 4 4 - +  (L3t3+ 6k2t2- 6kt-  24 )  

2 4 
(8.7) 

where ,8 = i ( t  - x). This series may also be rearranged to yield one valid for small 
times across the whole disturbed region t > 1x1. By applying the method of 
steepest descents to ( 8 . 4 ~ )  one finds that, in a region between the wave-front and 
5 = 0, where t ,  (t2 - x2) t ,  and t - (t2 - z2)* are all large, 

(8.8) 
8 exp { - kt + k(t2 - ”2))) kz 

T ” -  2(277)+ kt-k(P-xa)* {k2(t2-x2)}f’  

These results suggest the following approximation (which will be useful in 
part 111) : 
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Here a cubic wave profile has been fitted to give the correct values at x = 0, 
1x1 = t ,  the correct slope at 1x1 = t, and the correct curvature (zero) at x = 0. In  
figure 1 the values given by (8.9) are compared with values obtained from (8.5) by 
a careful numerical integration. For kt = 1,2,  the ‘exact’ and approximate 
curves are indistinguishable in the figure. The equations ( 8 . 4 ~ )  to (8.9), and 
figure 1, describe the following flow pattern. A compressive discontinuity moves 
along x = t and an expansive one along x = - t (by ‘ compressive ’ we mean that 
the particles cross from smaller to larger h, by ‘expansive’, the opposite), the 

-Equation (8.5) 

Equation (8.9) --___- 

FIGURE 1. Wave profiles due to a step. 

heights of both being exponentially damped. The velocity u is positive every- 
where, and is similarly damped. Halfway between the fronts, the surface eleva- 
tion remains and the velocity attains its maximum value, decaying only like 
t-4. There is, of course, a continuous transition from the values a t  the centre to 
those just inside the wave-fronts. 

Figure 2 shows wave profiles resulting from a double step (square wave) 
f ( x )  = 6U( -x+ 1) - 6U( -x- 1) .  These pictures, together with equations (8 .7)  
and (8.8), confirm our earlier description of a wave damped at  its edges, but 
tending to maintain a larger elevation near its centre. For the double step, the 
ordinary theory (k = 0) predicts that when t > 1, the elevation consists of two 
portions, in the intervals t - 1 < 1x1 < t + 1, each of height 46; between them, in 
1x1 < t - 1, there is no disturbance. In the present case the major part of the 
elevation remains in 1x1 < t - 1. 

If the initial surface elevation is sinusoidal everywhere, we recover standing 
wave solutions like those of 5 7, but with arbitrary wave numbers. Thus with 
f(x) = deiuz, ( 8 . 2 ~ )  yields 

@ = - 8eivz(vZ - k2)-* e-kt sin ((v2 - t ) .  

Clearly this solution could be made the basis of a more general one by super- 
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position, but we have thought it more interesting and convenient to proceed from 
the solution for a pulse, which is the basis of (8.2b). 

In  the axi-symmetric problem, the solution corresponding to ( 8 . 2 ~ )  is 

(8.10) 

where KO is the modified Bessel function of the second kind and order zero 
(Watson 1944), and a cut is required along the entire negative real axis of the 
p-plane to make KO single-valued. 

v8 0.5 

1 2 3 r  

p ?y8 0 5  

O O  1 2 3 4 x  

FIGURE 2. Wave profiles due to a double step, k = 1. 
Trajectories of the discontinuities are also shown. 
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For an initial elevation concentrated at the origin, such that the raised volume 
is y, we havef(r) = y&*(r)/nr, and 

(8.11) 

This solution shows essentially the same properties as the corresponding one for 
plane flow, (8.3a); however, there is now an algebraic singularity (as well as 
a Dirac pulse in 7 and u) a t  the wave-front r = t ,  and the decay of elevation near 
the origin is slightly more rapid than before (O(t-l) instead of O(t-+)). 

04r t - 2  

0 4 1  t - 3  

FIGURE 3. Wave profiles due to  a cylindrical step. 

For a cylindrical step, such thatf(r)  = SU(1 - r ) ,  the inner integrals of (8.10) 
may be evaluated, and one can find series for 7 behind the outgoing ( r  = 1 + t )  and 
incoming ( r  = 1 - t )  wave-fronts. In  addition, one can show that immediately 
behind the reflected wave-front ( r  = t - 1) 

6 e-kt 
log(t-r-l), 7Ns (8.12) 
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and one can find a series for T,I in powers of r2 in the domain r < t -  1. (The 
logarithmic singularity is a spurious result of the linearization, but suggeative of 
large disturbances: Meyer (1948) has studied a similar singularity in a related 
problem.) These results have been used to construct the wave profiles shown in 
figure 3. Although the whole profiles are shown, the series used, which were 
truncated after three terms, are believed to be reliable only for the regions shown by 
solid curves. The remaining Darts of the profiles were constructed from considera- 
tion of the singularity behind the reflected wave-front, and from the requirement 
of continuity that for a t t ime lo 'I 27rr dr = d. 

We observe that for k = 0 most of the elevation is carried along behind the 
outer wave-front, that it  decreases inwards, and that inside the reflected wave- 
front the elevation is negative. On the other hand, for k = 1 the elevation is 
damped behind the outer wave-front and increases inwards. The reflected wave- 
front is again expansive, but the elevation inside it is predominantly positive; as 
in the plane case, the wave tends to be 'held together' by the magnetic force. 

co 

PART 111. SOME NON-LINEAR EFFECTS IN PLANE FLOW 

9. The approximate equations in characteristic variables 
In this final part of the paper, we make attempts to solve the initial-value 

problem of 3 6 for plane flow and a liquid unbounded laterally when the govesng  
field equations are those of our non-linear approximation. Disturbances now 
move with a variable propagation velocity (gH)* relative to the fluid particles 
(which are themselves moving), and we are particularly interested in the question 
of whether, according to our approximation, this effect causes shocks to form 
(waves to break) in fields which are initially continuous. Clearly, there will be 
two opposing effects: the usual tendency of compressive wavelets to overtake 
those ahead of them, and thus to form a shock, and the damping effect of the 
magnetic force on the disturbances immediately behind a wave-front. We also 
seek to improve the solutions we have obtained for flows whose initial elevation 
contains steps; where the linearized theory showed compressive and expansive 
discontinuities moving with speed (gH,)), we try to construct a picture which 
distinguishes between shocks and centred expansion waves, and which gives an 
indication of their true velocities. Fortunately, the work of Friedrichs (1948), 
Lighthill (1949, 1955), Whitham (1952), Lin (1954), and Fox (1955) points the 
way to the resolution of such questions: we have merely to try to follow, incor- 
porating the effect of the new damping term. 

Using suffices to denote partial derivatives, we write the governing equations, 

U ~ + U U ~ + ~ , + ~ ~ U  = 0, 

namely 

in characteristic form: 

on C+ 

on C- 

I = u + hi, 2(h*), + ZC, + 2kuta = 0, 
'a t 

(9.2a, b) 

3 = u - ht) 
t A  

- 2(h*)/ + us + 2kutS = 0. (9.3a, b )  
r 

7 Fluid Mech. 7 
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Here a and j3 are curvilinear co-ordinates which are defined by ( 9 . 2 ~ )  and ( 9 . 3 ~ ) )  
and we fix their scale by specifying that on t = 0, a = -/3 = 4x. With k > 0, (9.2) 
and (9 .3)  no longer admit ‘simple wave’ solutions, and we shall have to be content 
with series expansions of exact solutions. These will be the simplest possible 
examples of the following two types: (i) wave-front series, in powers of a charac- 
teristic co-ordinate measured from a wave-front across which the normal deriva- 
tives of u and h are discontinuous, and (ii) small-disturbance series, in which 
h(a,j3), u(a,j3), z(a,,8), andt(a,p) are expandedinpowers of thesmall parameter 8. 
In  connexion with the latter it may be worth reminding the reader that, while we 
are perfectly free to construct mathematical solutions of the non-linear approxi- 
mation in powers of 8, the non-linear theory is a better approximation than the 
linear one only if 8 % e2. 

10. Wave-front series 
Let the (dimensionless) elevation of the free surface at time t = 0 be 

( 1 0 . 1 )  } 
h(X, 0) = 1 + f ( X )  = 1 ( X  2 0)) 

= 1 - A X + i B x 2 +  ... ( X  < 0)) 

the initial velocity being zero. Discontinuities will be propagated along a = 0 and 
,8 = 0. In  the region j3 < 0, t 2 0, the variables are undisturbed, h = 1 ,  u = 0, 
x = a - j3, t = a + j3; in the region a > 0, j3 > 0, all four variables are expanded in 
Taylor series about /3 = 0; and in the region a < 0, t 2 0, they are expanded in 
double Taylor series about a = 0, /3 = 0. This reduces the problem to a series of 
algebraic and linear ordinary differential equations, with boundary conditions 
on t = 0,a = 0, and /3 = 0. One finds that for a > 0, p > 0, 

h = 1 + A e-ka p + {A2( - e-2ka - $ka e-ka + 4 e-ka) I ( 1 0 . 2 )  

+ Ak2a e-ka + 2 B  e-ka} +p2 + . . ., 
u = A e-ka p + {A2( - 3 e-2ka - @a e-ka + 2 e-ka) 

+ Ak(ka e-ka - 2e-ka) + 2 B  e-ka} JIB2 + . . . , 

1 6 k  
) + 1) /3 + (” (27 e-2ka + 9ka e-ka - 12 e-ka - 15) 

t = a+ - ( e - k a - - l ) + l  j3+ - ( -21e -2ka-9kae -ka+6e-ka+15)  

3 B  
2k 

{:; ) 1:; 
+ A ( % k a e - k a - l ) + - ( e - k a - l )  

The main justification for including these rather clumsy expressions here is 
that they give us a glimpse of the non-linear terms (those in A2)  in an exact 
solution of equations (9.1). We first observe that the function t - x given by (10.2) 
is bounded, with k > 0 and /3 bounded, for all a, including a 3 00; whereas for 
k = 0, t-x - O(a). Thus with k > 0 a characteristic /3 = /3* can move only 
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a finite distance away from its ‘undisturbed position’ t--2 = 2b*, and the 
tendency of shocks to form is much reduced. In  particular, the derivatives 

3A 
a( 4k 

--2 01,o) = ts(a,O) = l - - ( l - e -ha)  

cannot vanish (which means that at the wave-front characteristics cannot 
converge, and shocks cannot form), if, and only if, 

(10.3) 

Non-linear 
Modified linear 

-------- Simple linear To 

------- ----,----- 
1 I I 

020 0 10 
- x + t  

( b )  

FIGURE 4. (a) The paths of the characteristics 1 = 0.05, 0.10; (b) the wave profiles 
near the front of ctn initially parabolic wave. 

7-2 
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where 9 is the initial wave slope, - H,(O - , 0) ,  and is positive for a compressive 
wave-front. Next we observe that if A and B are O(S), then in any of the expres- 
sions of (10.2) the ratio of second-order (A2)  terms to first-order (A,  B) terms is 
O(S) uniformly (that is, this ratio is O( 1) with respect to a and /3 for all a and p, 
including a -+ a), both for k = 0 and k > 0. This suggests that if we expand 
solutions in the a$-plane in powers of 8, then, as in the case k = 0, we shall obtain 
a uniform asymptotic expansion. 

Of course, equation (10.2) can also be used for approximate calculations of the 
leading sectors of flow fields. As an example, we take? A = 1, B = - 2, so that 
the initial wave profile has the shape, near X = 0, of the parabola 

of length L and amplitude $Ho; we also take k = 1, so that the condition (10.3) is 
satisfied. Figure 4(a )  shows the characteristics p = 0.05, 0.10, which move 
forward towards the wave-front, but not sufficiently to form a shock. Figure 4 (6) 
shows the leading part of the wave-profile at various times: the appropriate 
reference quantity a t  time t = 0 is not 7, but 47, because the wave splits into 
forward and backward moving parts. The profiles plotted are (i) the non-linear 
result of equation (10.2)) (ii) the ‘modified linear’ result, which can be obtained 
either from (10.2)) by neglecting terms in A2, or by applying the method of $ 11 
and expanding for p small, and (iii) the ‘simple linear’ result, which can be 
obtained either from (10.2), by setting a = $(x + t ) ,  p = +( - x + t )  and neglecting 
terms in A2 in the expressions for h and u, or from equation (8.2).  All these results 
are, of course, only asymptotic for ~9 -+ 0 and are shown only for p < 0.10. 

The forward movement of the characteristics lessens the decay of wave-slope 
with time predicted by the simple linear theory, and the modified linear theory of 
$11, which takes the shift of characteristics into account, yields much more 
accurate results than the simple one. Of course, the good agreement between 
non-linear and modified linear results is to be expected in the present case, since 
their difference occurs only in the curvature (pz) terms of (10.2). 

11. Small-disturbance series 
We now consider series of the form 

h-1  = Sy,(a,p)+. .., u = 8u,(a,p)+ ..., ( l l . la ,b)  

x = a - p + S x l ( a , p ) + . . . ,  t =a+p+w,(a,p)+ ..., (11.2U)b) 

and assume, for reasons which follow, that such expansions are uniformly 
asymptotic series in the @-plane. For the case k = 0, in which the series for Id 
and u terminate after the terms of O(S), Fox (1955) has shown that the infinite 
series for x, t are not only uniformly asymptotic, but actually converge for quite 
substantial values of the initial disturbances: it seems unlikely that the inclusion 
of a damping term should alter this result. Some slight evidence for our assump- 
tion has also been obtained in the previous section. Finally, we refer to the work 

t Note that taking IAl = 1 merely dehes L to be H,/161. 
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of Whitham (1952), in which a number of results obtained by essentially the same 
hypothesis are checked against more exact solutions. 

Substituting ( l l . la ,  b)  and (11.2b) into the ‘flow equations’ (9.2b),  (9.3b), we 
find that 7, and u, both satisfy 

+ k(F, + Fp) = 0, (11.3) 

and this is the linearized equation, 

Fzz - FU - 2kFt = 0, 

with x = a - p and t = a +P. Accordingly, 7, and u, are simply the linearized 
solutions of part I1 with x + t replaced by 2a and - x + t replaced by 2p, but our 
viewpoint is now quite different. Whereas x + t  and - x + t  are Cartesian co- 
ordinates in the xt-plane, a and p are to be regarded as variables constant on 
a characteristic: the essential difference lies in the O(S) terms of (1 1 2 ) ,  which are 
to be included in the fist approximation. 

Substituting (11.2u, b )  into the ‘direction equations’ ( 9 . 3 ~ ) ~  (9.3u),  we now 
find that 

Xlor - t,, = Q7l+ u1, 

“18 + t l j  = - 471 + u1, 
so that, in view of the boundary conditions x, = 0, t ,  = 0 on p=  -a, 

r a  
( 1 1 . 4 ~ )  

B 
x1+ t ,  = I-, { - h 1 ( a 9  P’) +%(a, P’)} dP’. ( 1 1.4 b)  

Since ql and u, are known, these are, in principle, known functions. 
Consider the initial-value problem studied previously: we now writef(x) = 6fl(x) 

for the initial surface elevation. We ask whether shocks can form from an initially 
continuous surface elevation; that is, whether the Jacobian 

J x , tp-x i ta  = 2+6(z,,+t,B-xx,B+tl,)+ ... 
can vanish somewhere in the field. Now it can be shown, by straightforward if 
lengthy calculations, that iff,@) is continuous and its derivative is bounded, such 
that If,(x) I < M ,  If;(.) I < N for all x, then with a +p = T ( 2 0) ,  

Hence with k > 0 the first-order term in the Jacobian remains O(6) for all T 
(whereas with k = 0 this term is O(&T)),  and by the assumption of uniformly 
asymptotic series, the higher-order terms behave similarly. According to the 
first-order theory and quite crude estimates, therefore, shocks will not occur if 

(11.6) 
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We proceed to the case where the initial surface elevation is discontinuous: the 
discontinuities are assumed to be separated by distances greater than O(6).  Then 
the linearized solutions ql and u1 are discontinuous across certain characteristics : 
let /3 = /3* be such a characteristic. By ( 1 1 . 4 4 ,  /3 = /3* - and /3 = /3* + will be 
different curves in the xt-plane, and the quantity 

is a measure of the distance between them. For shocks G is positive, and the 
domains /3 < /3* and /3 > /3* overlap in the zt-plane; for centred expansion 
waves G is negative, and there is a gap between these two domains in the xt-plane 
(figure 5 ) .  Because the jumps in q and u are exponentially damped, however, the 
width of the overlapping region or gap remains O(6) for all a if k > 0, whereas for 
k = 0 it is O(6a). It then follows from arguments rather similar to those used in 
another paper (Fraenkel 1959, Q 3) that the shock equations are satisfied, to our 
order of accuracy, if the shock is drawn halfway between the characteristics 
/? = /3*- and /3 = /3*+ in the xt-plane, the solutions between the shock and 
/3 = /3* - on the sheet /3 < /3*, and between /3 = /3* + and the shock on the sheet 
/3 > /3*, being discarded. The gap corresponding to an expansion fan may be 
filled, to our approximation, by taking a linear variation of h and u across it. 

FIGURE 6. (a) The ‘overlapping region’ near a shook, ( b )  the ‘gap’ produced 
by a centred expamion wave. 

For the initial elevation 
f(x) = S(1 +O(x)} U(  -4, 

(I  1 . 4 ~ ~  b )  then show, upon elimination of a, that 

on 

Hence for 6 > 0 the shock is 

36 
4k 

/ 3=0- ,  s - t = O ;  on / 3 = 0 + ,  ~ - t = - ( l - e - ~ ~ ) + 0 ( 6 ~ ) .  (11.7) 

(11.8) 
36 
8k 

z-t = -(1-e+)+O(a2),  

while for 6 < 0 the equations (1  1.7) give the boundaries of the expansion fan. 
Figure 6 shows the shock and characteristics pattern, according to the present 

theory, in the problem of a double step considered in part I1 (with k = 1). Here S 
has been taken equal to the rather large value 0 .4 ,  to make the departure of the 
characteristics from their undisturbed positions clearly visible. The integrations 
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of (1 1.4a, b )  to find /3 = 0.5 - were done numerically, the integrands being given 
by (8.6) and (8.9) with 2 and t replaced by cc - /3 - 1 and cc + /3; the increments for 
/3 = 0.5 + , and the equations of the other curves, were found analytically from the 
equations above. Like figure 4(a), the figure illustrates the convection of dis- 
turbances implicit in the characteristic equations. 

FIGURE 6. Shock and characteristics pattern resulting from a double step; k = 1, 6 = 0.4. 
The fine lines are the characteristics of the simple linear theory. 

Since for k > 0 and 6 sufficiently small, (i) condition (11.6) is satisfied, so that 
shocks do not form from initially continuous surface elevations, and (ii) shocks 
and centred expansion waves depart only a distance O(6) from their undisturbed 
positions, even for large times, we conclude that the linear theory of part I1 is 
uniformly valid as an approximation to the non-linear equations for small depth. 
(These latter, however, are not a uniformly valid approximation to the full 
equations, as was mentioned in 5 3). 

12. Concluding remarks 
Lehnert’s experiments (1952) are only described in a qualitative way in his 

paper, and a proper comparison with the present theory is therefore not possible. 
However, the most conspicuous results of the theory, namely the exponential 
decay of the wave amplitude and fluid velocity in a dish, and of the disturbances 
immediately behind a wave-front ( $ 5  7,8) ,  appear to agree with Lehnert’s obser- 
vation that the waves ‘disappear’ under the action of a magnetic field. On the 
other hand, his remark that the fluid ‘acts as a thick syrup ’ in the presence of the 
field must be treated with caution, for this suggests an effective viscosity, whereas 
the theory involves a resisting body force proportional to the velocity rather than 
to its second derivatives. 
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We have obtained solutions for only the simplest problems, in which the electric 
field strength is negligible and the current density is simply o=V A B, to the lowest 
order. In  this case the most significant effect in the energy balance of the whole 
flow (equations (3.6) and (4.6)) is the Joule heating, and the decay of disturbances 
is not surprising. Although solutions have been obtained only for plane and axi- 
symmetric flow, they are believed to be fairly representative of more general 
situations in a liquid unbounded laterally, for then the electric field still vanishes 
from the linearized hydrodynamic equations ($  4). 

For general, unsymmetrical waves in a finite dish made of insulating material, 
the electric field is significant even in the linear approximation, since the normal 
current must vanish at the vertical wall. In  that case the surface elevation still 

a27 a27 a27 a7 
ax: ax; - a t 2  at 

satisfies the equation 
-+- - - - + 2 k - ,  

but the relation of 7 to the velocity, and the boundary conditions, are less simple 
than in the cases studied here. In  addition, the energy balance involves an ex- 
change of electromagnetic energy between the liquid and the external field. 
A further investigation of these flows is intended. 

There is a certain similarity(first conjectured by H. W. Liepmann) between the 
wave-front behaviour of the cylindrical waves described in $8, and that of 
cylindrical sound pulses propagating into a gas having solid-body rotation and 
constant temperature (Fraenkell959). For zero magnetic field and zero rotation 
these two problems are, of course, virtually identical. Like the magnetic force of 
the present paper, the radial pressure gradient of the rotating gas resists the out- 
flow behind the wave-front, and the disturbances there are damped in both cases. 
However, the analogy is far from complete; the decay of disturbances is like 
r-ie-kr in the magnetic case, and like T-* e--k*ra in the rotating-gas case (k* being 
a constant, the details of which are irrelevant here), and the flow at substantial 
distances inside the wave-front is quite different in the two problems. 

I am indebted to Prof. H. W. Liepmann and to Prof. J. D. Cole for teaching me 
the elements of magnetohydrodynamics, and for many helpful discussions. This 
work was partly sponsored by the U.S. Air Force Office of Scientific Research 
under Contracts AF-18 (600)-383 and AF-49(638)-476. 

Appendix. The orders of the electromagnetic variables 

(A 1) B = (PNB0bl ,  PNBob2,  Bo+~"NBob,).  E" Bo J ( g L ) e 3 ) , }  

Our object in this Appendix is to select a set of values of q, I ,  m, n by a reductio ad 
absurdurn of all schemes but one. Attention is confined to a liquid unbounded 
laterally. In  view of conditions at the interfaces X, = 0,  H ,  the orders q, m, n must 
have the same values inside and outside the liquid; I need not. We shall be con- 
cerned only with the lowest-order form of all equations; terms which, on the basis 
of what has gone before, cannot be among the dominant ones, will be neglected 
throughout. In  each approximation of form F = d f + . . ., cvf of course refers to 

Let E = (@Bod(gL) el, EQBoJ(gL)ez, 
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the fist non-vanishing term in the expansion of F. Hence any set of exponents 
(orders) which leads to anyf vanishing everywhere, violates the definition of the v 
and is inadmissible. 

As before, we use the symbol a, which is 1 for 0 < X ,  < H ,  and 0 for X ,  < 0 or 
X, > H :  we shall also refer to these two domains by the words ‘inside’ and 
‘outside’. Maxwell’s equations now become 

V . B  = 0: 

(i) Assume that n < m. Then (A4) reduces to ab,/ax, = 0 inside and outside: 
b, vanishes at 1x31 = co and is continuous across x3 = 0, h, therefore b, = 0. Hence 

m < n; 

and in (A 3a, b),  inside, enab3/ax2, enab3/ax1 are negligible. 
(ii) Assume that m < $ or q < 9. Then the velocity terms in (A 3a, b) are 

negligible, and Maxwell’s equations and the boundary conditions are satisfied by 
b = 0, e = 0. Therefore g < and 9. 

(iii) The vertical momentum equation now reduces to 0 = - apjax, - 1 (pro- 
vided that K is bounded as e + 0) ,  so that p = h - x,, and the horizontal pressure 
gradient is independent of x,. 

(iv) In  view of (ii) the horizontal current densities are now represented by 

€gel + e b 2 ,  tqe, - e*vl 

(although the el, e2 terms may be negligible), and the horizontal momentum 
equation becomes 

Hence we choose K N O(e*), in order that the magnetic force shall not dominate 
the hydrostatic pressure gradient. 
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If q > 9 the e-terms are negligible in (A5); and if q = 4, (A2a, b)  show, since 
1 > 0, m 2 Q, that ae,/ax, = 0, &,/ax, = 0, inside. In  either case, it follows from 
(A 5) that if (v,, v,) are independent of x3 initially, as we assume, then they are so 
for all time. 

(v) Assume that q > iJ. Then the magnetic force in (A 5 )  is proportional to the 
velocity. Rayleigh introduced such a term (see Lamb 1932, 0 242) to represent 
a quasi-viscous force, and showed that under such a force irrotational flow is 
maintained, provided that the velocity is continuous; and continuous flows must 
be included in the approximate theory. For these, then 

Also, m = Q,  otherwise (A3a, b)  reduce to vl = v2 = 0. (A3a, 6 )  can now be 
integrated to 

and the boundary condition n . (V A B) = 0 on X ,  = 0, H ,  becomes 

b1 = -v1x3+f1 (x1~x2)~  b2 = -v2x3+f2(x1,x2), 

Equations (A 5 )  (q > i), (A 6), and (A 7), all of which are independent of xg, then 

Dv combine to  
Dv, Dv, 
Dt Dt 

v2--vl- = 0, or i 3 . ( v A z )  = 0. 

But v1 and v2 are fully determined by the equations of continuity and momentum 
(q > *), and the boundary conditions; (A 8) is not, and cannot be, satisfied by 
a general flow with curved particle paths. Therefore 

= 4. 
(vi) Assume that m > #. (A 3a, b)  reduce to 

e,+v, = 0, e2-v1 = 0, (A 9) 

and the magnetic force vanishes from the hydrodynamic equations. Then if 
(v,, u,) are continuous and initially irrotational 

av, av, ae, ae - 0 and, by (A9), -+A = 0. 
ax, ax, ax, ax, 

Further by (A 2c), with q = +, n > 0, 

Hence the vector (el, e,) is harmonic, free of singularities and vanishes at  infinity, 
so that el = e2 = 0. But this contradicts (A9) (and the result q = i), hence 

m = 3  
2' 

(For plane or axi-symmetric flows, in which q > 4, .m = Q also, for otherwise 
(A 3a, b)  reduce to  v1 = v 2  = 0.) 
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(vii) Assume that n > $.Then, outside, ( A 3 a ,  b)  reduce to ab,/ax, = ab,/ax, = 0 ;  
b, and b2 vanish at 1x31 = co, and are continuous across x3 = 0, h; inside, ab,/ax,, 
ab2/ax3 are independent of x3. Hence b, = b, = 0, and therefore 

n = 3. 
2 

(viii) It may be recalled that Z = ,!(a). If I( 1) < $, then by (A 3c)  e3 = 0 inside, 
which violates the definition of Z(1); if Z(1) > $, then ( A 3 c )  states that 
(ab,/ax,) - (ab,/az,) = 0, in contradiction of results already established. Hence, 

Z(1) = $. 

(ix) If Z(0) < 8, ( A 2 a ,  b )  reduce to ae,/ax, = ae3/ax2 = 0,  and since e3 vanishes 
for zl, x2 + co, e, = 0 outside, which violates the definition of t(0). If E(0) > 3, 
(A 2a, b )  lead to el = e2 = 0 outside, in contradiction of results already estab- 
lished. Hence, 

l(0) = *. 
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